Schaufenster Bioökonomie
Bio-Kunststoffe für nachhaltige Verpackungen [09.10.20]
Foto: clipdealer
In den 27 europäischen Ländern werden nicht nur jedes Jahr 89 Millionen Tonnen Lebensmittel weggeworfen – auch Verpackungsabfälle fallen tonnenweise an. Diesem Trend tritt ein europäisches Forschungsvorhaben entgegen: Im Projekt MyPack treiben die Forschende und Unternehmen die Markteinführung innovativer, nachhaltiger Verpackungen auf Basis erneuerbarer Rohstoffe voran, um die Verschwendung von Lebensmitteln und Verpackungsmaterialien zu reduzieren. In Hohenheim sind das Forschungszentrum für Bioökonomie unter Leitung von Susanne Braun und das Fachgebiet Konversionstechnologien nachwachsender Rohstoffe von Prof. Dr. Andrea Kruse an MyPack beteiligt: Mit über 430.000 Euro Fördersumme gehört das Projekt zu den Schwergewichten der Forschung.
In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Projekte mit einem finanziellen Volumen von mindestens 350.000 Euro für apparative Forschung bzw. 150.000 Euro für nicht-apparative Forschung. Insgesamt akquirierten Wissenschaftlerinnen und Wissenschaftler der Uni Hohenheim 2019 für Forschung und Lehre 33,9 Millionen Euro an Drittmitteln.
Die Erfindung von Kunststoffen hat unsere Welt verändert. Allerdings nicht nur zum Positiven: Plastik findet sich auch da, wo es nichts zu suchen hat – als schwimmende Inseln im Meer oder als Mikroplastik in unserem Essen. Doch nicht nur Kunststoffe, auch Lebensmittel landen tonnenweise im Abfall. Dies ist nicht nur eine Verschwendung von Ressourcen, sondern belastet auch in zunehmendem Maße Mensch und Umwelt.
Deshalb hat sich das Forschungsprojekt MyPack zum Ziel gesetzt, die Markteinführung innovativer Verpackungen zu unterstützen, um sowohl Lebensmittel- als auch Verpackungsabfälle und deren negativen Einfluss auf die Umwelt zu reduzieren. Im Fokus stehen biologisch abbaubare und kompostierbare Verpackungen, Verpackungen aus erneuerbaren Rohstoffen, oder spezielle Verpackungen, die etwa durch eine reduzierte Luftdurchlässigkeit die Haltbarkeit von Lebensmitteln verlängern.
Dabei sind die Anwendungsbereiche breit gefächert – von der Verpackung für gebrauchsfertigen geschnittenen Salat bis hin zur Herstellung von Schalen für Babynahrung. Doch die Forscher untersuchen nicht nur die Auswirkungen auf die Umwelt und die industrielle Umsetzbarkeit, sondern auch die Akzeptanz durch die Verbraucher.
Grüne Plastikalternativen
An der Uni Hohenheim beschäftigt sich das Fachgebiet Konversionstechnologien nachwachsender Rohstoffe von Prof. Dr. Andrea Kruse mit dem Thema, welche Alternativen es zu den herkömmlichen Rohstoffen gibt. Doktorand Markus Götz aus ihrem Team erläutert den Ansatz: „Wir suchen nach alternativen Verpackungs-Lösungen, die dafür sorgen, dass Lebensmittel länger frisch und haltbar bleiben, so dass weniger weggeworfen werden muss.“
„Dabei unterstützen wir Unternehmen, die verstärkt Materialien aus nachwachsenden Rohstoffen einsetzen wollen, und helfen bei der Bewertung. Leider machen diese biobasierten Kunststoffe derzeit noch einen unbedeutenden Teil der weltweiten Kunststoffproduktion aus. Die meisten der heute auf dem Markt befindlichen Kunststoffe werden aus Erdöl hergestellt“, fährt er fort.
PEF statt PET: Zu hundert Prozent aus nachwachsenden Rohstoffen und recyclebar
So wird auch der häufig für Getränkeflaschen und andere Lebensmittelverpackungen eingesetzte Kunststoff PET (Polyethylenterephthalat) aus Rohöl hergestellt. „Das Ziel besteht darin, das ‚T‘ in PET möglichst weitgehend durch ein ‚F‘ zu ersetzen, wobei das F für ‚Furandicarbonsäure‘ steht. Eine Vorstufe davon, das Hydroxymethylfurfural (HMF), lässt sich beispielsweise aus Chicorée-Wurzelrüben gewinnen, die sonst ungenutzt als Abfall auf dem Kompost oder in der Biogasanlage enden“, erklärt Götz weiter. Aber auch andere kohlehydrathaltige Abfälle aus der Forst- und Landwirtschaft lassen sich verwenden. So entsteht auch keine Konkurrenz zur Lebensmittelproduktion.
PEF lässt sich also zu hundert Prozent aus nachwachsenden Rohstoffen herstellen. Dabei weist es keine schlechteren Eigenschaften als erdölbasiertes PET auf. Im Gegenteil: Das biobasierte PEF hat eine höhere Gasbarriere als PET, d. h. es verhindert das Eindringen von Sauerstoff in das Lebensmittel viel besser, wodurch beispielsweise die Haltbarkeit von Fleisch drastisch erhöht wird. Umgekehrt bleibt bei kohlensäurehaltigen Getränken das Gas länger in der Flasche, wenn sie aus PEF hergestellt wurde.
Zudem ermöglicht die höhere mechanische Stabilität von PEF die Verwendung dünnerer Folien und Verpackungen. So können Flaschen, die aus PEF hergestellt werden, eine deutlich dünnere Wandstärke als PET-Flaschen haben. Das reduziert nicht nur die Material-, sondern auch die Transportkosten.
Aktuell ist die größte Hürde für den industriellen Einsatz noch die mangelnde Verfügbarkeit dieses Materials. Doch Vorbehalten zur Recyclingfähigkeit von PEF kann Götz begegnen: „PEF ist PET chemisch gesehen so ähnlich, dass beide Materialien gemeinsam recycelt werden können. Es muss vorher keine aufwändige Trennung erfolgen.“
PLA und PEF: Stark im Verbund
Was für PEF noch weitgehend Zukunftsmusik ist, ist für einen anderen Bio-Kunststoff schon Realität: PLA als Abkürzung für Polymilchsäure wird vom Handel bereits häufig für Lebensmittelverpackungen verwendet. Ebenso wie PEF wird PLA zu hundert Prozent aus nachwachsenden Rohstoffen erzeugt. Basis bildet hier Maisstärke, die chemisch oder biologisch zum Ausgangsmaterial Milchsäure umgewandelt wird. Die hohe Wasserdampfdurchlässigkeit des PLAs begrenzt die Einsatzmöglichkeiten im Lebensmittelbereich allerdings.
Wissenschaftsjahr 2020/21 - Bioökonomie |
|
„In MyPack ist es gelungen, eine Verbundfolie aus PLA und PEF herzustellen“, erklärt Götz. „Diese verbindet die Barriere-Eigenschaften des PEFs mit dem vergleichsweise geringen Preis des etablierten PLA. Hier werden die positiven Eigenschaften beider Polymere kombiniert. Dies kann die Markteinführung des PEFs beschleunigen, da die hohen Kosten im Moment eine der größten Markteintrittsbarrieren sind.“
Die Verbundfolie ist vergleichbaren konventionellen Kunststoffen sogar überlegen: Bei gleichen Barriere-Eigenschaften kann sie sogar 30 Prozent dünner und damit leichter sein. „Dies verringert den Materialeinsatz, die Transportkosten und somit auch die Umweltbelastung“, so Götz.
Auch Markteintrittsbarrieren werden einbezogenDoch damit Biokunststoffe auf dem Markt Fuß fassen können, müssen zunächst die Barrieren identifiziert werden, die den Markteintritt behindern. Diese Aufgabe hat sich das Hohenheimer Forschungszentrum für Bioökonomie auf die Fahnen geschrieben – gemeinsam mit anderen Projektpartnern wie dem Biokunststoff-Hersteller Novamont und der Europäischen Prüfgesellschaft für Verpackungsrecycling.
“Wir müssen die wichtigsten Treiber in der Biopolymerindustrie erkennen und das rechtliche Umfeld und den Regulierungsrahmen beschreiben“, erklärt Susanne Braun, Leiterin des Forschungszentrums für Bioökonomie. „Außerdem analysieren wir die Einsatzmöglichkeiten von biologisch abbaubaren und kompostierbaren Materialien nach dem Ende ihrer Lebensdauer.“ In Zusammenarbeit mit mehreren beteiligten Partnern aus dem Konsortium, hat Tetiana Pavlenko vom Forschungszentrum für Bioökonomie, die Spezifikationen zusammengefasst, die zu wichtigen Richtlinien für die Markteinführung neuer Verpackungstechnologien führen sollen.
Außerdem können neue Verpackungsmaterialien am Markt nur erfolgreich sein, wenn sie auch von den Verbraucherinnen und Verbrauchern akzeptiert werden. Deswegen beschäftigt sich ein Teilprojekt von MyPack mit den unterschiedlichen Erwartungen, die verschiedene Verbrauchergruppen an die Nachhaltigkeit, Handhabung sowie Sicherheit und Qualität des Produktes haben. Diesen Aspekt untersucht die Universität Wageningen. Sie ermittelt die Marktchancen auf Verbraucherebene für nachhaltigere Produktverpackungen. Dabei berücksichtigt sie unterschiedliche Verbrauchersegmente, Produktkategorien, Verpackungslösungen und lokale Kontexte.
EU-Projekt MyPackZiel des EU-Projektes „Best markets for the exploitation of innovative sustainable food packaging solutions“ (MyPack) ist es, nachhaltigen Lebensmittelverpackungstechnologien zum Markteintritt zu verhelfen oder ihren Markt zu erweitern.
Koordiniert wird MyPack von ACTIA (Association de coordination technique pour l‘industrie agroalimentaire), dem französischen Technischen Koordinierungsverband für die Lebensmittelindustrie. Das Konsortium besteht aus 18 Partnern aus 6 verschiedenen Ländern. Forschung und Wissenschaft arbeiten dabei eng mit der Industrie, vor allem kleinen und mittleren Unternehmen, zusammen.
MyPack startete am 1.11.2017 und läuft bis zum 30.4.2021. Die Europäische Union unterstützt das Projekt über das Rahmenprogramm Horizont 2020 mit insgesamt fast 5 Mio. Euro, davon entfallen auf Hohenheim 431.725 Euro. Damit zählt es zu den Schwergewichten der Forschung dort.
Mehr Infos
Text: Stuhlemmer / Elsner